Difesa Ambientale

Endoterapia

ARBOPROF®

Dr. G. Longhin

ENDOTERAPIA: COS'E'

E' l'unico metodo che consente la difesa del verde urbano in ogni situazione contro ogni attacco

Endoterapia

Unico intervento possibile con le nuove norme

Tecnicamente miglior intervento

Indispensabile tecnicamente

Vicino alle abitazioni Con alberi alti In presenza di fiori

Nelle giornate con vento

Con gli insetti di difficile controllo Per particolari patologie (radici) Per non danneggiare gli insetti utili

Confronto tra i metodi utilizzati nella protezione degli alberi in città:

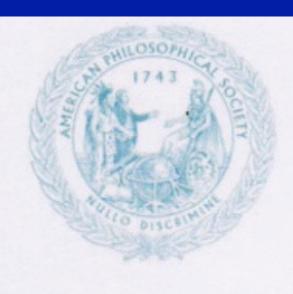
	Endoterapia	Irrorazione	Irr. al tronco	Interramento
Quando	sempre	assenza vento notte	assenza vento	solo nei parchi
Efficacia Insetti Funghi fogliari Funghi radicali		buona/insuff. buona/insuff. nessuna	sufficiente	buona insufficente sufficiente

03/09/18 5

Endoterapia: storia

- Nel 1840 e nel 1841,
- <u>Boucherie</u> pubblicò il resoconto di un esperimento in cui furono iniettate sostanze chimiche in alberi viventi.

Storia


Reschko trattò nel 1901 mille alberi

affetti da clorosi iniettando solfato di ferro in canali tagliati alla base degli alberi malati.

Storia

- C.A. Mokrjetsky,
- raccontò di aver iniettato più di 500 alberi;
- il metodo di iniezione era analogo a quello di Shevyrev.
- Alberi malati furono curati con solfato di ferro.

Endoterapia:

Pathological Anatomy of the Injected Trunks of Chestnut Trees

Author(s): Caroline Rumbold

Reviewed work(s):

Source: Proceedings of the American Philosophical Society, Vol. 55, No. 6 (1916), pp. 485-493

Published by: American Philosophical Society

Storia dell'endoterapia moderna

Prima fase: 1950-1975

Seconda fase: 1975: 1995

Terza fase: 1998-2017

Modelli

Per lavorare con l'endoterapia

si richiedono alcune conoscenze fondamentali

che riguardano

principalmente:

struttura del legno nelle diverse specie

zona di passaggio della linfa grezza
fattori che favoriscono la traspirazione

principali fitopatie degli alberi

1) STRUTTURA ALBERI

in funzione dell'endoterapia

Struttura dicotiledoni 1

03/09/18 16

STRUTTURA DEL LEGNO

ANGIOSPERME

GIMNOSPERME

Legno:

eteroxilo

omoxilo

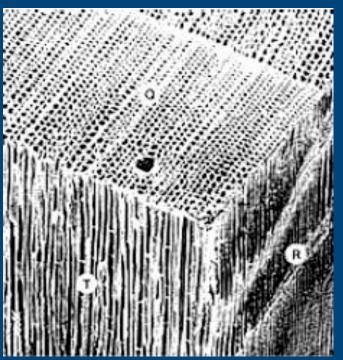
Porosità:

diffusa anulare

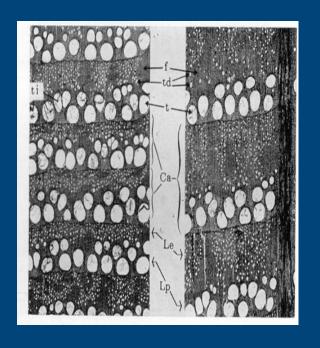
Trasporto:

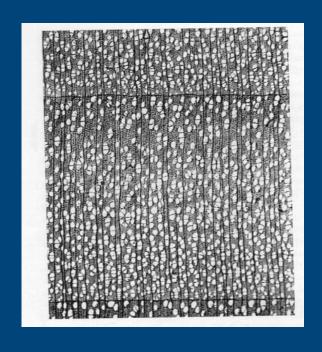
trachee

tracheidi


03/09/18

17

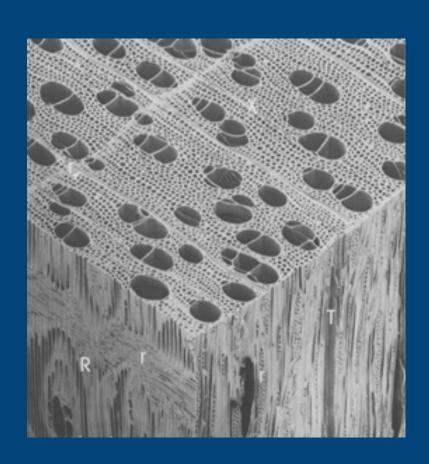

Struttura del legno

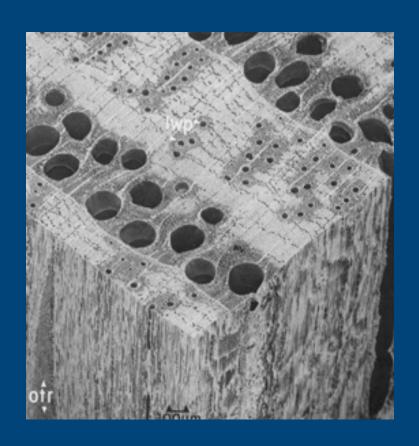

Eteroxilo Omoxilo

Disposizione vasi porosità angiosperme

Porosità:

anulare


diffusa


Vasi:

trachee

acero

quercia

20

Porosità

ANULARE

- Frassino
- Castagno
- Olmo
- Gleditsia
- Noce
- Robinia
- Cercis
- Gelso
- Catalpa
- Quercia
- Celtis
- Albizzia
- Kako
- Paulownia
- Mimosa

DIFFUSA

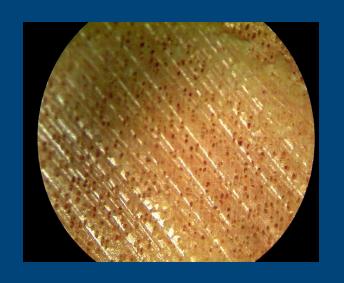
- Betulla
- Acero
- Cornus
- Salice
- Liriodendro
- Liquidambar
- Magnolia
- Platano
- Tiglic
- Pioppo
- Carpino
- Ippocastano
- Leccio
- Ontano
- Cornus
- Eucalipto
- Noce
- Prunus
- Ciliegio
- Sophora

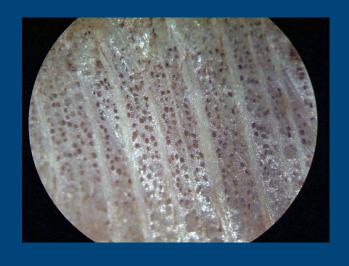
Conifere

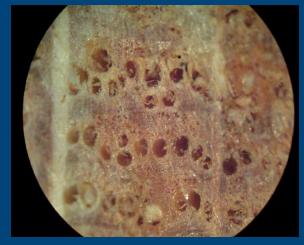
Il legno delle conifere contiene canali resiniferi ben evidenti:

fanno eccezione

ī


l'Abete bianco, il Cipresso, i Cedri ed il Tasso.


Conifere


- Resinose
- Pinus spp
- Picea abies
- Larice
- Pseudotsuga

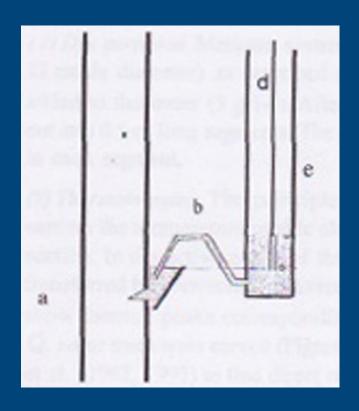
- Non resinose
- Abete canadese
- Sequoia
- Cedro
- Tasso
- Cipresso
- Tsuga
- Cryptomeria

Confronto trachee 1 40x

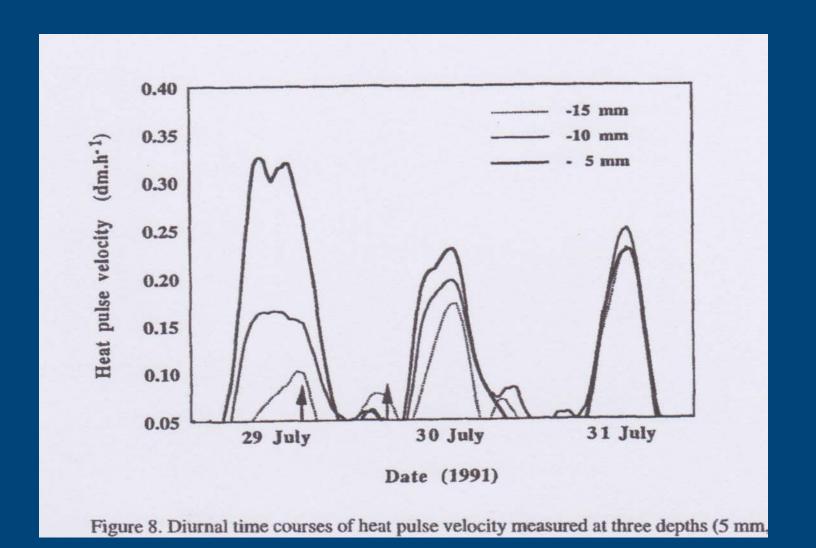
Traspirazione

Punto 3

Fattori della traspirazione

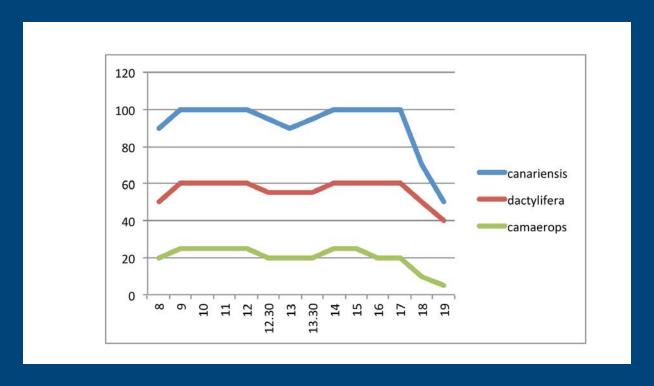

Disponibilità idrica

Umidità relativa dell'aria UR

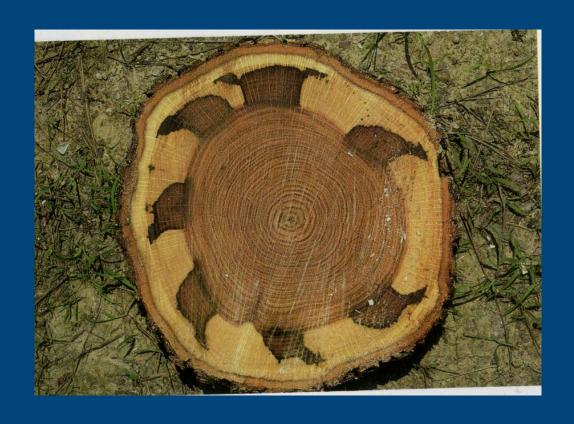

Temperatura

Luminosità

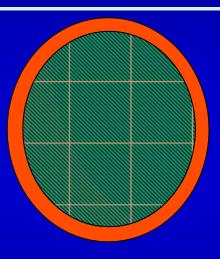
Prova assorbimento



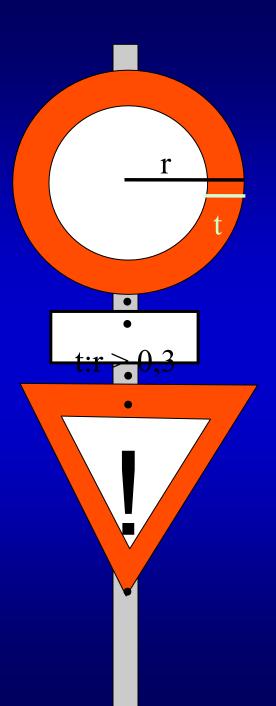
Assorbimento



Assorbimento palme


CODIT

Compartmentalization of decay in trees



Active response occurs only within the living sapwood

Ring porous trees

Diffuse porous trees

Barrier IV

costruita all'esterno della ferita

(contiene materiale fungicida)

Callus healing of drill-based tool wound

34

Callus healing of needle-based tool wound

03/09/18 35

03/09/18 35

Effetti nel legno metodo ArboProf

■ INSETTI E ACARI

CRITTOGAME

DEPERIMENTI

INSETTI E ACARI

- Cameraria ohridella
- Corytucha ciliata
- Afidi spp
- Minatori fogliari
- Scolitidi Tomicus
- Coleotteri del legno

- Insetti succhiatori
- Cocciniglie
- Psilla
- Acari
- Larve defogliatrici
- Processionaria
- Euproctis
- Rhynchophorus
- Paysandisia

Patologie

- Oidio: platano, quercia
- Antracnosi: ippocastano, platano
- Cancro: olmo, platano, ulivo
- Phytophthora: castagno, araucaria
- Verticillium: aceri, ulivo
- Fusarium: palme
- Latifoglie: armillaria, fomes, ganoderma

Fisiologia alberi

Prima

Dopo

03/09/18 40

ALBERI TRATTATI

Aesculus h. **Ippocastano** Platano Platanus spp. Tiglio Tilia e. Olmo Ulmus spp. Quercia Quercus spp Albizzia Albizzia j. Faggio Fagus spp. Cedro Cedrus spp. Pino Pinus spp. Noce Juglans r. Celtis Celtis a. Betulla Betula a. Frassino Fraxinus exc. Magnolia Magnolia spp. Araucaria Araucaria a.

Castanea s.

Phoenix spp,

Washingtonia

Camaerops, Trach.

Castagno

Palma

Abete Picea spp. Acero Acer spp Liquidambar Liquidambar s. Cercis Cercis s. Corbezzolo Arbutus u. Olivo Olea e. Rododendro Rhododendron f. Robinia Robinia p. Carpino Ostrya c. Cipresso Cupressus spp Libocedro Calocedrus d. Ciliegio Prunus avium Tuja Tuja O. Glicine Wisteria floribunda Mimosa Acacia dealbata Sofora Sophora pendula Tsuga canadensis Tsuga

Sequoiadendron giganteum

Morus spp.

Liriodendron t.

Sequoia

Liriodendro

Gelso

03/09/18 41

Contrasto funghi cariogeni

42